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Abstract. Within the framework of second-order Rayleigh-Schrödinger perturbation theory, the polaronic
correction to the first excited state energy of an electron in an quantum dot with anisotropic parabolic
confinements is presented. Compared with isotropic confinements, anisotropic confinements will make the
degeneracy of the excited states to be totally or partly lifted. On the basis of a three-dimensional Fröhlich’s
Hamiltonian with anisotropic confinements, the first excited state properties in two-dimensional quantum
dots as well as quantum wells and wires can also be easily obtained by taking special limits. Calculations
show that the first excited polaronic effect can be considerable in small quantum dots.

PACS. 71.38.-k Polarons and electron-phonon interactions – 63.20.Kr Phonon-electron and
phonon-phonon interactions – 73.21.La Quantum dots

1 Introduction

In polar crystalline semiconductors, the coupling between
the electron and the longitudinal-optical (LO) phonon
leads to the formation of a composite particle called the
polaron. Polarons have an important effect on electronic
and optical properties of the system. Recent developments
in semiconductor fabrication technique have made it pos-
sible to obtain a system with reduced dimensionality,
such as quantum wells, wires and dots. For a variety of
new interesting electronic and optical properties in low-
dimensional systems, polaron problems naturally attach
great attention and have been widely investigated [1–18].

So far, most investigations on polarons are mainly fo-
cused on the polaronic correction to the ground state (GS)
electronic level and quantum size effects on the interac-
tion of the ground state electron and LO phonon [1–8].
The general result of accomplished investigations is that
polaronic corrections are considerable in small quantum
sizes and increase with the decreasing confinement length.
Whereas, relatively much fewer investigations are avail-
able in the literature on the excited states, though, the
excited states are important in optical absorption and
emission which involve electron transitions.

Recently, Mukhopadhyay and Chatterjee [10] have in-
vestigated the first-excited state (ES) polaron energies
in a three-dimensional (3D) and two-dimensional (2D)
quantum dot (QD) with isotropic parabolic confinements
by using second-order Rayleigh-Schrödinger perturbation

a e-mail: dhfeng@siom.ac.cn

theory (RSPT), which is used for the small electron-
LO phonon coupling constant and the electronic level
spacing between the first excited and the ground state
being substantially away from a real phonon-assisted tran-
sition. They found the excited state polaron exhibits new
properties different from those for the ground state, e.g., as
the confinement frequency approach the frequency of the
LO phonon, the excited polaron will be unstable with re-
spect to the emission of a phonon. Motivated by the work
of Mukhopadhyay and Chatterjee, we extend their method
to study the polaronic correction to the first excited elec-
tronic energy level in a QD with general parabolic con-
finements. The confining potential that we choose here is
only axially symmetric (i.e., symmetrical in the xy-plane).
The first excited state in isotropic 3D dots are three-fold
degenerate, while in anisotropic 3D quantum dots (QDs)
the degeneracy is totally or partly lifted. Anisotropic con-
fined QDs will give some new properties compared with
those for isotropic QDs. More interestingly, in the frame-
work of 3D Fröhlich’s Hamiltonian with anisotropic con-
finements, the excited polaronic correction in 2D QDs are
easily obtained by taking special limits. In this anisotropic
confinement framework, many properties of polarons can
be easily illustrated such as why the polaronic correction
in 2D QDs is larger than that in 3D QDs. The first excited
polaronic corrections in bulk, quantum wells and wires are
also obtained as ‘by-products’, which are found to be equal
to those for their ground counterparts. This equality re-
flects that the energy levels of the unconfined electrons in
bulk, quantum wells and wires are continuous.
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This article comprises the following. First we derive
the expressions of the first excited polaronic correction
in a general potential by using the second-order RSPT
method. Then our numerical results are presented and
discussed. Finally, a brief conclusion is drawn in our in-
vestigation.

2 Formulation

We assume the parabolic potential in the QD is only ax-
ially symmetric. Considering that bulk phonons play the
most important role in the polaron effects and the contri-
bution from the surface phonons is negligible [4], we as-
sume that the electron interacts with only bulk phonons.
This assumption was widely used for parabolic confine-
ments [1–3,6,9,10]. The Fröhlich’s Hamiltonian of a po-
laron can be written as

H = −1
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r +
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(
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ρρ2 + ω2
zz
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+
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q
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q aq
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where all vectors are in three dimensions and the units
have been chosen as me = � = ωLO = 1 (Feynman
units); me being the effective mass of the electron, and
ωLO the LO phonon frequency. r = (ρ, z), ρ = (x,y);
ωρ = ωρh/ωLO and ωz = ωzh/ωLO, where ωρh and ωzh

are the frequencies of the confining parabolic potential in
the xy-plane and the direction z, respectively; a+

q (aq) is
the creation (annihilation) operator for a LO phonon of
wave vector q, and ξq is given by [7]

|ξq|2 =
23/2π

V q2
α, (2)

where V is the volume of the three-dimensional crystal
and α is the electron-phonon coupling constant.

Recently, Hameau et al. [11] show the electrons and the
LO phonons in QDs are always in a strong coupling regime
even for the material with relatively small α (e.g. for GaAs
with α = 0.068). The corresponding value of α seems to be
much larger than (by a factor of 2, although a most recent
result shows an increase only up to 25% [19]) than that in
bulk due to the strain or other confinement effects. Other-
wise, Lelong and Lin [20] also interpret the experimental
results conducted by Hameau et al. [11] by using a per-
turbative approach with the same α as in bulk. In order
to investigate the special polaron property in anisotropic
QDs compared with that in isotropic QDs, we calculate
the electron-LO phonon interaction energy by using the
second-order RSPT method for α � 1 with the same
value of α as in bulk. The treatment is not very rigorous
if the dot sizes are extremely small, but may still serve as
a good approximation to obtain some of the most impor-
tant properties of the electron-phonon interaction effects
in QDs with anisotropic confinement. The second-order

RSPT correction to the electron energy in the first ex-
cited state is given by
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Em = (mx + my + 1)ωρ + (mz + 1/2)ωz. (6)

Hn(x) is the Hermite polynomial of order n. Em is the
energy of the unperturbed m-th state with parabolic con-
finements. For the first excited state, E1 = 2ωρ +ωz/2 for
ωρ < ωz and E1 = ωρ + 3ωz/2 for ωρ > ωz, respectively.

Using the transformations

1
Em − E1 + 1

=
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exp[−(Em − E1 + 1)t]dt, for m ≥ 1 (7)

and the Slater sum rule for the Hermite polynomials
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one can perform the summation over mx, my, mz in equa-
tion (3) easily. Then using

∑

q

exp[iq · (r − r′)]
q2

=
V

4π

1
|r − r′| , (9)

one can integrate over the electron position vectors r
and r′ by transforming these vectors into center-of-mass
vector u = (r + r′)/2 and relative vectors v = (r − r′)/2.
The final form depends on the relative values of ωρ and ωz.
We will proceed to discuss three different cases.
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A. ωz = ωρ = ω

In this case, the first excited state is three-fold degener-
ate, and the second-order RSPT polaronic correction to
the first excited state energy of an electron is obtained as
follows:

∆E1 =
−α

6

√
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π
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0

dt exp[(ω − 1)t]

×
[

5 exp(−ωt) + 1
√
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− 1
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+
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6(ω − 1)

√
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π
, (10)

where care has been taken to treat correctly the sin-
gularity originating from the m = 0 term of the sum
over m in equation (3), which has been treated sepa-
rately and appears as the last term of equation (10). Equa-
tion (10) is the same as the result of 3D QDs obtained by
Mukhopadhyay and Chatterjee [10].

B. ωz > ωρ

When the confinement in the direction z is stronger than
that in the other two directions, the first excited state is
two-fold degenerate related to the xy-plane confinement,
and can be assumed as E1x. The first excited polaronic
correction is obtained as
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From equation (11), equation (10) can be easily extracted
if taking ωz → ωρ.

If the direction z is strongly confined, i.e. ωz → ∞, we
will show

lim
ωz→∞
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Then we get
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This is just the case of 2D isotropic QDs which is well-
studied as an important low-dimensional quantum struc-
ture [10]. In equation (12), if we further take the limit
ωρ → 0, we can get the first excited energy correction
of pure 2D polarons: ∆E1 = −(π/2)α, which is equal to
the ground polaronic correction ∆E0 [2]. The equality re-
flects the characteristic that the energy spectrum in the
xy-plane of 2D unconfined systems is continuous.

As the confinement in the xy-plane is at the weak-
confinement limit (i.e. ωρ → 0), equation (11) will yield
the result for quantum wells with parabolic potentials.
Then we can get
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,
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where ζ′ = 1
2ωzt[1+coth(1

2ωzt)]. ∆E1 is equal to ∆E0 [1],
reflecting the characteristic that the energy spectrum in
the z direction is continuous.

In equation (13), if further taking ωz → 0, in which all
the three directions are at the weak-confinement limit, we
can get
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ωz→0

√
ωz√

1 − exp(−ωzt)
=

1√
t
,

lim
ωz→0

1
2
ωzt

[
1 + coth

(
1
2
ωzt

)]
= 1,

lim
ζ′→1

arctan
√

ζ′ − 1√
ζ′ − 1

= 1.

and �E1 = −α. This form corresponds to the first ex-
cited energy correction of the free 3D polarons in the bulk
limit [21], which equals to their ground energy correction
for the continuous electron energy spectrum.

C. ωz < ωρ

As the confinement in the direction z is weaker than those
in the other two directions, the first excited state is E1z

and one-fold degenerate, and the form of the first excited
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polaronic correction is
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From equation (14), equation (10) can also be extracted
if taking ωz → ωρ.

When ωz → 0, the system then becomes quantum
wires, which is one of the most important cases of low-
dimensional quantum structures. We can get

∆E1 = − α
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(15)
where ζ′′ = 2/(ωρt[1 + coth(1

2ωρt)]). For the continuous
electron energy spectrum in the z direction, ∆E1 will be
equal to ∆E0 which has been derived in reference [1].

Furthermore, in equation (15), if taking ωρ → 0, it
corresponds to the case of free 3D polarons. We obtain

lim
ζ′′→1

1
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ln
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)
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and �E1 = −α, which also equals to the ground polaron
energy shift of free 3D polarons.

From equations (10–15), we found the most sev-
eral low-dimensional polaronic correction, including 3D,
2D anisotropic and isotropic QDs, quantum wells and
wires as well as bulk limit, can be obtained on the ba-
sis of a 3D anisotropic Fröhlich’s Hamiltonian.

3 Numerical results and discussion

In order to investigate the dependence of the polaron en-
ergy shift on the QD size conveniently, we define the di-
mensionless confinement length l = 1/

√
ω, where l =

l0/r0, r0 = [�/(meωLO)]1/2, l0 = [�/(meω)]1/2. Corre-
spondingly, lρ = 1/

√
ωρ and lz = 1/

√
ωz. Since the first

excited polaronic corrections in quantum wells and wires
as well as in the bulk limit are equal to those for their

0.0 0.5 1.0 1.5 2.0
0

2

4

6

E
S
(2D

)

E
S
(3D

)

ES(3D)

ES(2D)

GS(3D)

GS(2D)

-D
E

/a
 (

F
.u

.)

l (F.u.)

 2D

 3D

Fig. 1. Polaronic corrections −�E/α (in Feynman units, F.u.)
of the ground- and first- excited state versus the confinement
length l (in F.u.) in isotropic 2D and 3D quantum dots.

ground state counterparts, which have been well stud-
ied [1], we will lay emphasis on the first excited pola-
ronic correction of 3D and 2D QDs with equations (10–12)
and (14).

Figure 1 shows − � E1/α for both 2D and 3D
isotropic QDs as a function of the dimensionless confine-
ment length l. The GS polaronic corrections −�E0/α are
also plotted for comparison. Evidently there is a singular-
ity at l = 1 of the plot corresponding to the first excited
states both for 2D and 3D QDs. As l > 1 and l < 1,
the ES polaronic corrections increase with the decreasing
confinement length, so does the GS case. The polaronic
corrections in 2D are larger than those in 3D both for the
first excited and the ground state, which can be easily un-
derstood since 2D is the limit case in 3D as one of the
dimensions is strongly confined.

Interestingly, in Figure 1, as l > 1, the ES polaronic
correction are larger than, and tend to in the large confine-
ment length, the GS polaronic correction both in 2D and
in 3D QDs. With the increasing confinement length, the
ES and GS polaronic correction identically tend to their
2D or 3D free polaronic GS data. While for l < 1, the ES
polaronic correction are smaller than that for the GS one.
Figure 2 presents the difference between the ES and the
GS polaronic corrections (−�E1/α)− (−�E0/α) versus
the confinement length. As l is smaller than about 0.5 (far
from the singularity), the difference become larger with
the decreasing confinement length. It is noted that, near
l = 1, the RSPT method is not rigorously valid for the
appearance of the singularity and one should make other
improved methods such as variational calculations [9].

For anisotropic 3D QDs, some new results different
from isotropic cases are obtained, which are illustrated in
Figure 3 and Figure 4. In Figure 3, we plot (− � E1/α)
as a function of the dimensionless confinement length in
the direction z with three fixed xy-plane confinements.
As lρ = 1.4, there is no singularity for the first excited
state, because when lz changed from larger than to smaller
than 1.4, the first excited state is changed from E1z to
E1xy. Hence there will be a turning point at lz = 1.4 for
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Fig. 3. The first excited polaronic correction −� E1/α as a
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lρ = 1.4 curve, so do the other two cases at lz = 0.4 for
lρ = 0.4 and lz = 0.7 for lρ = 0.7, respectively. For lρ = 0.4
and lρ = 0.7, the singularity still exists. Similar results are
also shown in Figure 4, corresponding to the plot of the
fixed lz = 1.4, no singularity points exist; while for lz = 0.4
and 0.7, singularity exists with a turning point at lρ = 0.4
and lρ = 0.7, respectively. It is noted that, the plot for
lρ = 1.4 is higher than that for lρ = 0.7 in Figure 3 when
lz < 1, and the the plot for lz = 1.4 is higher than both of
those for lz = 0.4 and 0.7 when lρ < 1 in Figure 4. Both
of these results are irregular and disobey the rule that
the smaller QDs have larger corrections. This irregularity
originates from the singularity, which can be illustrated by
comparing the polaronic corrections near the singularity
in Figure 1.

Finally, in some realistic cases, e.g. for GaAs,
α = 0.068, me = 0.066 m0 (m0 is the free electron mass).
the energy Feynman units �ωLO = 36.7 meV, the confine-
ment length Feynman units [�/(meωLO)]1/2 = 5.57 nm,
when the confinement length lz and lρ of anisotropic QDs
are 2.0 nm and 6.5 nm, respectively, the first ES polaronic
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Fig. 4. The first excited polaronic correction − � E1/α as
a function of the confinement length in the xy-plane with
the fixed confinement length in the z direction. Both the
energy and the confinement length are denoted in Feynman
units (F.u.).

correction is 4.1 meV. Compared to bulk value 2.5 meV,
this first ES polaronic correction is enhanced much. It
is considerable compared to the unperturbed energy of
the first excited state (which is 196 meV), and the unper-
turbed energy of the ground state (which is 169 meV). We
can also find it is the same order of the transition energy
between the ground and the first excited state (which is
27 meV), and of the exciton binding energy (<5 meV [22]).
The electron-LO phonon interaction should be taken into
account especially when one considers the fine structure
of the energy level.

4 Conclusions

We have calculated the effect of the electron-LO phonon
interaction on the first excited electronic energy level in an
anisotropic parabolic QD by using the second-order RSPT
method. In the framework of an anisotropic 3D Fröhlich’s
Hamiltonian, the excited state properties in 2D QDs,
quantum wells and wires are naturally obtained by taking
special limits. The polarons in anisotropic QDs have some
new properties compared with those for isotropic QDs,
e.g. there exists a turning point in the plot for the first
excited polaronic correction, and singularity may not ex-
ist in some cases while there always exists a singularity
point for isotropic QDs. Moreover, numerical calculation
shows that the polaronic correction to the first excited
electronic energy can be considerable in the strong con-
finement region.
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